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An existence theorem for the Enskog equation with small initial data is proved 
in an L ~ setting. This type of result is not available for the Boltzmann equation. 
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1. I N T R O D U C T I O N  

As is well known, the Boltzmann equation has so far resisted all attacks 
tending to prove a global existence theorem for sufficiently general data/1) 
Several particular cases have been successfully dealt with, e.g., 
homogeneous problems, ~2,3) near equilibrium solutions, ~4-6) perturbation of 
a vacuum, (7 9) and, more recently, nearly homogeneous solutions "~ and 
homoenergetic affine flows.~ll) 

The difficulties appear  to be related to the circumstance that the non- 
linear collision term contains the product of the distribution function at 
one space point by the same function at the same space point (but for a 
different velocity argument).  This fact was noticed long ago by 
Morgenstern, (~2) who introduced a modification of the collision term by 
assuming two different arguments x and x .  for the two factors and an 
additional integration, thus producing an eightfold integration in the right- 
hand side of the Boltzmann equation. Later Povzner ~3) indicated that a 
sixfold integration was sufficient, by taking the unit vector n appearing in 
the collision term to be directed along x -  x .  and adding an integration 
with respect to I x - x . [ .  He even argued that this description is closer to 
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physical reality than the one embodied in the Boltzmann equation. What is 
true, of course, is that two interacting mass points are separated at the 
moment of collision and their distance varies during the interaction; but 
the rationale of the Boltzmann equation is exactly that these and other 
effects are negligible for a dilute gas. Further, there is no indication that 
Povzner's equation, embodying these details in a purely formal way, is any 
closer to reality. In the particular case of rigid spheres, Povzner's argument 
is certainly wrong, because the distance between the centers is fixed in a 
collision and equal to the sphere diameter. Further, in this case a more 
accurate equation embodying the main effects differentiating a dense gas 
from a dilute one exists and was derived by Enskog as early as 1922. (14) 

The Enskog equation retains the fivefold integration typical of the 
Boltzmann equation and differs from the latter because it takes into 
account (1)many-body effects, modifying the collision frequency, and 
(2) the different location of the centers of the spheres during a collision. 

While the first of these effects should really become important for 
dense gases only, the second effect, in order to be negligible even for a 
dilute gas, requires the distribution function to be continuous (in some 
sense) on the scale of the sphere diameter ~. It is thus of some importance 
to investigate the Enskog equation embodying factor 2 and later try, if 
possible, to take the limit when a goes to zero. This investigation should 
also shed light on the problem of the derivation of the Boltzmann equation 
from molecular dynamics. (15-19) 

The fact that the Enskog equation has only a fivefold integral implies 
that Povzner's argument (13) does not work. It was recently shown, (2~ 
however, that an existence proof can be constructed if the data depend on 
just one space variable. In a subsequent paper (zl) (which, however, 
appeared earlier) the case of data depending on two space variables was 
attacked; the Enskog equation, however, was modified by including non- 
physical collisions. 

In this paper the problem of existence of solutions of the Enskog 
equation with initial data depending on all the three space variables is 
attacked. The effects related to the modification of the collision frequency 
at high densities (denoted by factor 1 above) are omitted, as was done in 
Refs. 20 and 21. 

Global existence and continuous dependence on initial data are 
proved in L 1 for sufficiently small data. We remark that no such result is 
available for the Boltzmann equation. In fact, all the small-data results (v 9) 
refer to function spaces of the L ~ type. Indeed, if an L 1 result were 
available for the Boltzmann equation, one could presumably obtain a 
result for arbitrarily large data, by first cutting the high speeds, exploiting 
hyperbolicity and the H-theorem, and then passing to the limit of no cutoff. 
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This program is not so easy to carry out for the Enskog equation, because 
strict hyperbolicity is lost even with the velocity cutoff, because of the 
displaced arguments in the collision term. 

2. BASIC E Q U A T I O N S  A N D  P R E L I M I N A R Y  RESULTS 

where 

The Enskog equation to be considered in this paper reads as follows: 

c3f+c~t r " ~ =  Q(f '  f )  (2.i) 

Q(f, f)=a2 II; ( f ' f , -  ff,) [V.nl H(V.n) d~, dn (2.2) 

Here the arguments of f . ,  f ' ,  and f .  are ( x . , { . ,  t), (x,{',  t), and 
(x . ,  { . ,  t) rather than (x, {, t), and H denotes, as usual, Heaviside's step 
function. Further, 

v=r 
~'=r 

(2.3) 
~,  = ~ ,  +n(n'V) 

X ,  = X q- no- 

n ranges over a unit sphere, or rather, because of the Heaviside step 
function, over a half of such a sphere. 

Equation (2.1) is to be solved with the initial data 

f (x ,  ~, 0 ) =  ~b(x, ~) (2.4) 

and the condition that f i s  in LI(R) for any ~. 
We shall now prove some preliminary results. To this end, we fix an 

arbitrarily large time interval Iv = [0, T]. Then we introduce the following 
function space: 

Of #feL~(DxR3); F =  f (x ,  r t) defined in D with ~-~ + r ~xx 

~b(x, r = f (x ,  r 0) �9 L'(R 3 x R3)'~ (2.5) 
) 

where 

D = R 3 • Iv (2.6) 
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ProoL Let 

~f ~ f  
Q(x, ~, t ) = ~ - ~ + ~ . o x  ~ (2.10) 

Then 

f (x ,  ~, t) = ~b(x - ~t, ~) + Q(x - ~t + ~s, ~, s) ds (2.11) 

Define 

g(x, ~) = I~b(x, ~)[ + [Q(x+~s,~,s)lds (2.12) 

Then Eq. (2.11) gives Eq. (2.8). Equation (2.9) follows trivially from the 
definition of the norm in F, Eq. (2.7). 

The second result is given by the following: 

kemma 2.2. I f f E F ,  then Q ( f , f ) ~ L I ( D x R  3) and 

I[ O(f, f)l[ L~o • R3)~< 11 f II 2F (2.13) 

ProoL By Lemma 2.1 it is enough to bound 

a2f f f f f  [g(x--~'t .  ~') g(x + an - -~ , t .  ~,) 

+ g(x--~t, ~) g(x + crn-- ~ ,  t, ~,)]  

x IV'hi H((~-~,).n) d~, d n d ~ d t d x  

~f ~f 
Ilflt F = I1~11LI(R3 x ~) + -~+ ~" ~X LI(D x ~ (2.7) 

F is a Banach space isometric to L~(D • R 3) • LI(R 3 • R3). 
The first result is contained in the following result, analogous to one 

proved by Tartar ~22) for solutions of discrete velocity models depending on 
just one space variable: 

k e m m a  2.1. I f f ~  F, then there is a g~  LI(R3  x R 3) such that 

If(x, ~, t)[ ~< g ( x - ~ t ,  ~) a.e. inD (2.8) 

If gIIL,(R~• R3)= IlfrlF (2.9) 
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=aefflf I g(y, ~) g(y + ( ~ - ~ , ) t  + an, ~,) 

x IV-nl (H((~-~,) .n)+H(--(~-~,) 'n))d~,  d~dydndt 

= fflf  g(y' ~') g(z, ~,) dy dz d~ d~, 

~< I] g[] 2~(R3 • R3) (2.14) 

where the usual change of variables (~', ~ , ) ~  (~, ~,) has been performed 
and 

y = x - ~ t ,  z = y +  ( ~ - ~ , ) t + n a  (2.15) 

The integral with respect to z is extended to a subset of R 3. Use has been 
made of the fact that the Jacobian of z with respect to (t, n) is IV- hi. 

Equation (2.14) shows that the statement of the lemma holds, since 
Eq. (2.13) follows from Eq. (2.14) and Lemma 2.1. 

Lemma 2.3. The following inequality holds: 

sup IIflILx~R3• []fllF (2.16) 
O<~t<~ T 

In fact, f is given by Eq. (2.11) [where Q is defined in Eq. (2.10)]. 
Integrating Eq. (2.11) over R3• R 3 and using Eq. (2.7) gives Eq. (2.16). 

3. G L O B A L  E X I S T E N C E  FOR S M A L L  L 1 D A T A  

We are now ready to prove the following: 

T h e o r e m  3.1. There is a constant Co such that if ~b e LI(R3x R 3) 
and satisfies 

C= II~IIL'(R3xR~) ~ Co (3.1) 

then there exists a unique solution to Eq. (2.9) [with Qc(f, f )  in place of 
Q(f, f ) ]  for any time interval IT. This solution satisfies 

L I ( R  3 • R 3 x IT) 

In order to prove this result, we use the contraction mapping theorem. 
Accordingly, we construct a mapping h ~ f =  N(h) from F into itself in the 
following way. 

822/51/1-2-20 
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Given ~beL ~ and heF, f i s  the solution of 

f (x ,  ~, 0) = ~b(x, ~) 

By Lemma 2.2 we have 

(3.3) 

(3.4) 

and hence 

~ + ~ "  ~< Ilhll~ (3.6) 

I l f l l f~  II~llLllm + IFh]l 2 =  C +  IIh/I 2 (3.7) 

Then N maps the ball BR defined by JlhllF~< R into another ball B~ if 

k ~ c + R 2 (3.8) 

We can now bound the Lipschitz constant of N on BR. If h ~ BR and 
f= N(h), then 

[]f -- fllF<~ []h-'k ]~11F [[h--h]]r<~2R l ib--hi[ F (3.9) 

Now, if we define Co to be a constant less than 3/16, we have a strict 
contraction if R = 1/4 and the theorem is proved. In particular, Eq. (3.7) 
with h = f  gives 

[tftlF<~ C q-~llfllF (3.10) 

and Eq. (3.2) follows. 
We can now prove a simple result on the continuous dependence on 

the initial data. 

T h e o r e m  3.2. If two initial data OeLI(R3xR 3) and q~e 
LI(R3 x R3)satisfy Eq. (3.1), then the corresponding solutions satisfy 

sup p[ f - f  II L,IR3 • R3) ~< ~ limb - ~711L,(~3 • R3) (3.1 1 ) 
t ~ R  

IIQ(h, h)llL,w x R3)~< Ilhll ~ (3.5) 

A mapping h ~ f =  N(h) is thus established. We want to see that by 
suitably choosing Co in Eq. (3.1), this mapping is a contraction on some 
closed set of F. 

In fact, Eqs. (3.3)-(3.5) give 
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It is sufficient to note that Eq. (3.9) with h = f can be modified to cover the 
case of different initial data, with the following result: 

H e n c e  

t l f  -- f l I F ~  II@--~IIL'~I~• + ~ I I f  -- f l I F  (3.12) 

!l f - - f  tl F ~  < ~ limb --  q~ll c~R3 • R3) (3.13) 

a n d  Eq. (3.11) ho lds ,  t h a n k s  to  L e m m a  (2.3). 

N o t e  A d d e d .  I t h a n k  the referee for  ca l l ing  m y  a t t e n t i o n  to  Ref. 23 
by  L a c h o w i c z ,  which  p r o v e s  loca l  ex i s tence  a n d  u n i q u e n e s s  in  L 1, a n d  
Ref. 24 b y  B e l l o m o  a n d  L a c h o w i c z ,  wh ich  p r o v e s  g l o b a l  ex is tence  for  n e a r  
v a c u u m  da ta .  
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